Physically-Feasible Reactive Synthesis for
Terrain-Adaptive Locomotion

Anonymous Author(s)

Abstract—We present an integrated planning framework for
quadrupedal locomotion over dynamically changing, unforeseen
terrains. Existing methods often depend on heuristics for real-
time foothold selection-limiting robustness and adaptability-
or rely on computationally intensive trajectory optimization
across complex terrains and long horizons. In contrast, our
approach combines reactive synthesis for generating correct-
by-construction symbolic-level controllers with mixed-integer
convex programming (MICP) for dynamic and physically feasible
footstep planning during each symbolic transition. To reduce the
reliance on costly MICP solves and accommodate specifications
that may be violated due to physical infeasibility, we adopt a
symbolic repair mechanism that selectively generates only the
required symbolic transitions. During execution, real-time MICP
replanning based on actual terrain data, combined with runtime
symbolic repair and delay-aware coordination, enables seamless
bridging between offline synthesis and online operation. Through
extensive simulation and hardware experiments, we validate the
framework’s ability to identify missing locomotion skills and
respond effectively in safety-critical environments, including scat-
tered stepping stones and rebar scenarios. Code and experimental
videos are available at https://synthesis-micp.github.io/.

Index Terms—Legged Robots, Optimization and Optimal Con-
trol, Formal Methods in Robotics and Automation

I. INTRODUCTION

ERRAIN-adaptive locomotion is essential for enhancing

the mobility of legged robots and moving beyond blind
walking strategies [1]-[3]. Many existing methods achieve
terrain adaptability by adjusting footholds around a nominal
trajectory in real time [4], [5]. To further boost traversability,
some approaches have explored variable gait patterns. In
[6]-[8], jumping motions are precomputed offline and trig-
gered heuristically upon detecting obstacles. Other methods
embed gait switching—such as transitions from walking to
jumping—within simplified dynamics models during trajec-
tory sampling [9], or rely on pre-trained classifiers to assess
feasibility [10]. However, despite the importance of safety
in high-risk settings such as disaster zones and construction
sites, relatively few works address formal safety guarantees
for dynamic locomotion [11], [12] that fully account for the
robot’s physical limitations.

Mixed-integer programming (MIP)-based methods [13],
[14] model both contact state and contact surface selection for
each leg and timestep as binary decision variables. This allows
them to explicitly capture the interaction between terrain ge-
ometry and the robot’s kinematic and dynamic constraints [15].
When dynamics and constraints are suitably relaxed, the result-
ing convex approximation (MICP) provides a global certificate
of feasibility upon convergence [16], making it a powerful
tool for formally assessing locomotion viability. However,

Request Terrain Tracking
Goals Polygons Controller
P T
¢ , 4 1l

Offline MICP Online State

Synthesis € Planner € Execution < Estimation < —

')
i f
i i

Strategy

Fig. 1. System architecture overview. The solid lines indicate online commu-
nication, while dashed lines represent offline processes. The request goals in
the offline phase are user-defined, while those in the online phase are provided
by a global planner based on the global goal.

the computational demands of MIP-based approaches scale
poorly with increased terrain complexity and longer planning
horizons, posing a major hurdle for real-time applications. To
mitigate this, various simplifications have been proposed, such
as fixing contact sequences [17], [18], constraining timing
[19]-[21], or limiting the number of footsteps [22]. Despite
these efforts, scalability remains a challenge in cluttered
environments with various terrain segments and features.

To simplify navigation across complex terrains, one effec-
tive strategy is to decompose long-horizon, global tasks into
a sequence of localized, robot-centric environments centered
around intermediate waypoints [4]. Despite this simplification,
the associated MIP formulation still faces computational chal-
lenges, as it must account for all nearby terrain elements. To
address this, we discretize the local environment and constrain
each MIP to solving only a single discrete transition at a time.
These discrete transitions are then composed using a Linear
Temporal Logic (LTL)-based reactive synthesis framework
[23], which enables us to systematically construct a correct-
by-construction strategy that guides the robot through local
decisions toward achieving its intermediate goals.

In this work, we present an integrated planning framework
that unifies reactive synthesis with MIP-based optimization
to enable legged robots to respond safely and efficiently to
dynamic and unpredictable terrain conditions. We abstract both
the continuous robot states and local environmental context

https://synthesis-micp.github.io/

into symbolic representations, allowing the robot to make
high-level decisions in real time for negotiating complex
obstacles such as large gaps or cluttered terrain (see Fig. 1).
Each symbolic transition is validated through an MICP to
ensure the physical feasibility of the locomotion process. This
architecture not only connects high-level symbolic reasoning
with low-level dynamic feasibility, but also mitigates the com-
putational challenges of solving long-horizon MICP problems.

By leveraging guidance from the LTL-based symbolic plan-
ner, each MICP instance only needs to handle short horizons
and a limited set of terrain features, which substantially
reduces computational load. Another noteworthy feature of our
planning framework is its two-stage hierarchy: in the offline
synthesis stage, we employ gait-free MICP formulations that
jointly optimize over contact mode and foothold placement to
precompute a diverse set of locomotion skills for symbolic
transitions. We leverage a high-level manager and symbolic
repair proposed in [24] to minimize the number of calls to the
costly gait-free MICP, enabling efficient synthesis of terrain-
adaptive locomotion strategies. During online deployment, we
switch to lightweight gait-fixed MICP formulations using these
precomputed gaits, enabling real-time generation of physically
consistent motions with real-world terrain data. If a symbolic
transition is no longer possible or the current terrains and
goals were not considered offline, we perform runtime repair
to generate new robot skills and synthesize an updated robot
strategy, allowing continuous traversal on unexpected terrains.
Importantly, the proposed framework remains flexible and
modular—it can be driven by commands from a higher-
level planner [9], [10], [25]-[28] or directly from a user,
and it easily accommodates new behaviors by expanding the
symbolic transition set.

Although this manuscript adopts a similar framework to
[24], which combines reactive synthesis with MICP, it sub-
stantially extends the previous work with a focus on practical
deployment. First, we enhance the online execution workflow
by addressing inevitable delays in MICP solving through co-
ordinated scheduling between the strategy automaton and the
tracking controller. Second, we introduce online retargeting of
the robot’s desired pose at each transition to ensure feasibility
under the actual terrain configuration. Finally, beyond the sim-
ulation results reported in [24], we validate the full framework
through hardware experiments and benchmark its performance
against both a heuristics-based footstep planner and a pure
MIP planner. We also include an extension study incorporating
yaw orientation to further demonstrate the generalizability of
the proposed framework.

The main contributions of this work are summarized as
follows:

o« We propose a general, full-stack planning and control
framework that combines reactive synthesis with MICP
for terrain-adaptive locomotion.

« We improve the online execution pipeline by coordinating
the reactive synthesis strategy automaton with the track-
ing controller to handle delays from MICP solving, and
by retargeting the robot’s desired pose online to remain
feasible with respect to real-world terrain.

o We validate the full framework on hardware, and bench-
mark its performance against both a heuristics-based
footstep planner and a pure MIP planner.

II. RELATED WORK
A. Hierarchical Planning for Terrain-Adaptive Locomotion

Planning for terrain-adaptive locomotion can be boiled
down into solving contact sequence and timing (equivalently
gait), location (equivalently foothold), and robot motion (e.g.,
Center of Mass (CoM) or base pose), given the chosen
kinematics/dynamics model and the perceived terrain informa-
tion. Hierarchical approaches first separately or simultaneously
address part of the above problems and then solve for the rest,
which allows for higher computational efficiency. Kinematic
footstep planning focuses on the first two problems, neglect-
ing the robot dynamics through graph-based approaches [4],
[29]-[33] or optimization-based approaches [15], [20], [34],
[35]. Although non-fixed gait/contact plans can be generated
for very rough terrains [36]-[38], conservative quasi-static
motions are generated for challenging terrains due to the
kinematic simplification during footstep planning.

Given the recent advances in optimization-based ap-
proaches, notably Model Predictive Control (MPC), another
focus of the literature is on the local foothold adaptation and
the integration of robot dynamics for dynamic locomotion.
Instantaneous foothold adaptation around a nominal location,
with a fixed and cyclic gait, is performed based on heuristic
search [7], [39], [40] or learning approaches [41]-[46]. In
[5], [47], [48], the base pose and foothold are optimized
jointly, demonstrating impressive terrain traversing capabil-
ities on rough terrains. More recently, MPC has been em-
ployed within hierarchically integrated planning frameworks
for legged navigation over rough terrain, incorporating explicit
terrain uncertainty quantification [49]-[51].

However, the above dynamic locomotion works consider
a fixed gait pattern that usually prohibits achieving versatile
behaviors, such as jumping. In [6]-[8], jumping motions are
generated offline and triggered through heuristics. In [9], [10],
[26], RRT-Connect is used for rapid kino-dynamic locomotion
planning, and the switch between normal walking and jump-
ing is either embedded inside a reduced-order model during
sampling [9] or decided by a pre-trained feasibility classifier
[10]. Beyond limited gait modes, other works focus on online
gait planning and/or foothold selection and deploy MPC to
track the plan, which can be further categorized into model-
free [52]-[56] and model-based methods [57]-[59].

B. Simultaneous Planning via Optimization

Planning for terrain-adaptive locomotion problem can also
be formulated as a combinatorial optimization problem that si-
multaneously optimizes for gait, foothold, and robot dynamics.
One approach is to incorporate rigid [60] or smoothed [61],
[62] complementarity constraints, which accurately model the
physical contact interaction behavior but remains computa-
tionally inefficient due to the non-smoothness and highly
nonlinearity. Promising online contact-implicit MPC results

are reported in [63]-[65] but still limited to low-dimensional
system or static environment.

Another way of encoding discrete contact decisions is to
treat both the contact state and the contact plane selection
for each leg at each timestep as binary variables [13], [14],
[66]. The underlying problem can be formulated as Mixed
Integer Program (MIP). Convex approximations of nonlinear
dynamics, usually centroidal dynamics, and constraints are
typically required to transform the MIP into a more tractable
Mixed Integer Convex Program (MICP), albeit with an in-
creased number of binary variables. A global certificate for the
approximated convex problem exists upon convergence [16],
providing an ideal means to determine the feasibility in our
proposed method. To relieve the computational burden due
to the introduction of many binary variables, the works of
[17], [19], [21] assume the contact sequence and timing are
chosen a prior, and only optimize the contact plane selection.
Aceituno-Cabezas et al. [22] optimize the contact sequence
within a certain gait cycle that fixes the number of footsteps.
However, it is inevitable that the problem complexity grows
exponentially when the number of discrete contact options
increases along with the time horizon and terrain features.
Our work aims to alleviate computational burden through a
two-stage approach. In the offline phase, expensive MICPs
that optimize both contact state and foothold selection are
solved to generate necessary locomotion gaits. In the online
phase, efficient MICPs with adaptive and predefined gaits are
used to produce dynamically feasible motions and footholds.
Additionally, guided by a synthesis-based task planner, each
MICP in our work considers shorter time horizons and fewer
terrain features compared to solving a single large MICP
problem.

C. Task and Motion Planning for Contact-Rich Planning

Task and Motion Planning (TAMP) formally defines
symbolic-level tasks and searches through a graph of prede-
fined motion primitives that enable feasible symbolic transi-
tions [67], [68]. For more complex physical contact resoning,
Toussaint et al. propose Logic Geometric Programming (LGP)
[69] and embed the high-level logic representation into the
low-level motion planner, demonstrating contact-rich tool-
use behaviors [70] after defining abundant action primitives.
Building on this, a broader range of motions has been show-
cased, including versatile manipulation [71], [72] and loco-
manipulation tasks [73]. In a similar vein, works such as
[74]-[81] integrate graph-search or sampling-based methods
with optimization-based approaches in a holistic manner, ab-
stracting contact modes within a discrete domain. However,
the combinatorial nature of these problems often leads to poor
scalability due to the explosion of contact modes. Deploying
such approaches online in dynamic environments remains an
open challenge. From a different perspective, we abstract a
smaller set of task-level contact modes as locomotion gaits
over a specific time horizon and distance, allowing the MICP
to solve for details such as contact locations and robot motion
during execution. This shifts the focus to selecting locomotion
gaits within a local environment while ensuring safety and
completeness through synthesis-based approaches.

Unlike LGP that solves an integrated TAMP problem,
synthesis-based approaches using Linear Temporal Logic
(LTL) operate primarily at the task level, emphasizing safety
and completeness guarantees within the task domain [82].
These methods typically synthesize a sequence of task-level
actions, which are then executed by a motion planner. Re-
cently, LTL has been applied to safe locomotion tasks, em-
ploying distinct task-level abstractions on topological maps
of terrain [83]-[85] or locomotion keyframes for reduced-
order models [11], [12], [86]. Reactive synthesis [87], widely
applied to mobile robots [88], has been employed to enable
prompt decision-making in response to more complex envi-
ronments [12] or external perturbations [86]. Notably, Zhao
et al. [11] formulate the terrain-adaptive locomotion problem
as a sequential decision-making task, selecting appropriate
locomotion modes with predefined contact and locomotion
keyframes to accommodate dynamically changing terrains.
However, the locomotion mode selection is explicitly encoded
in the LTL specification using expert knowledge, lacking
a physically feasibility guarantee. In this work, we aim to
combine the strengths of reactive synthesis and MICP, utilizing
the global certificate of MICP as a feasibility checker for
terrain-adaptive locomotion.

D. Physically-Feasible Reactive Synthesis

While reactive synthesis can promptly and safely respond
to dynamic environments, it typically does not assess physical
feasibility when being deployed on complex robotic systems.
To bridge the gap between discrete abstraction and continuous
system dynamics, various strategies have been proposed. Stud-
ies in [89], [90] focus on automatically synthesizing controllers
in the continuous domain based on high-level specifications.
Another approach involves incorporating dynamics directly
into the reactive synthesis process by abstracting physical
systems, including nonlinear [91], switched [92], and hybrid
systems [93] with manageable model complexity. However,
for legged robots with multiple contacts navigating dynamic
terrains, these physically feasible reactive synthesis approaches
remain computationally intractable.

Recent efforts [94], [95] focus on symbolic repair for
unrealizable task specifications, defining symbolic skills with
preconditions and postconditions, similar to TAMP, to identify
missing skills that make the specification realizable. These
works introduce iterative feasibility checks based on symbolic
repair suggestions, emphasizing alignment between symbolic
task specifications and physical reality. Building upon this,
Meng et al. [96] extend this type of approach to online
symbolic repair. Inspired by these works, Zhou et al. [24]
adopt a similar mechanism for terrain-adaptive locomotion.
Specifically, they abstract the robot and terrain states in a local
environment and define physically feasible skills by solving
MICP. They leverage high-level manager and symbolic repair
to efficiently identify missing but necessary skills, reducing
the need for frequent calls to the computationally expensive
gait-free MICP. Our work significantly completes [24] through
seamless integration with a low-level tracking control module,
enabling systematic benchmarking, and demonstrating real-
world hardware deployment.

III. PRELIMINARIES

Consider a robot equipped with sensors navigating an envi-

ronment toward a designated global goal ggioba € R2. This task
can be broken into a sequence of local navigation subtasks,
where the robot moves toward intermediate local request goals
Glocal, determined by a global planner based on the nearby
segmented terrain polygons P. We illustrate an instance of
such a local task setup, following the same example introduced
in [24].
Example 1. Consider a 2D grid world with nine cells (in
yellow) in Fig. 2. The robot is required to move from an initial
cell (e.g. the center cell) to a desired goal cell indicated by
the star. Each cell is assigned a terrain type, such as Dense
or Sparse stepping stones.

(a) Real World

(b) Abstraction (c) Repair

Fig. 2. Terrain abstraction and skill definition. (a) Top-down view of the
real-world terrain before abstraction. The red polygons denote the segmented
terrain polygons. (b) Abstraction of the terrain and robot’s skills (pink) moving
from one location to another. (c) Repair process to find a new skill (blue).

A. Abstractions

Given a set of terrain polygons P, such as those in Fig. 2(a),
we abstract them into a 2D grid of dimension n x m. For each
axis, we label every position with a symbol, producing two
sets: X = {xo,...,Tn_1} and Y = {yo, ..., Ym—1}-

We introduce a collection of atomic propositions AP, par-
titioned into input variables Z and output variables O, which
capture the symbolic world state and robot actions. The inputs
7 include robot position inputs Zyopot, Tequest inputs Zy.q, and
terrain inputs Zierrain, With Z = Zropot U Zreq U Lierrain- The Tobot
inputs are defined as Ziopor = {7, | 2 € X} U{m, |y € V}
to represent the robot’s location. Request inputs are given by
Treq = {mz | & € X}U{my? | y € V} to represent the desired
goal cell. The terrain inputs are defined as Ziegain = {nY |
x € X,y € Y}, which describe the terrain type associated
with each grid cell. We assume a finite set of terrain types
of size n;, defined according to their physical characteristics.
For z € N, we denote [z] := {0, ..., z—1}. Accordingly, each
terrain input n¥ € Zimin 1S an integer variable taking values
from [n;], which we further translate into Boolean propositions
following the approach of [97]. The robot state abstraction can
also be extended to incorporate orientation, such as the yaw
angle of the floating base (see Sec. IX-F).

An input state o7 is a mapping oz : Z — {True,False}U
[n¢]. Because the robot and its goal occupy only a single grid
cell each, exactly one 7, one 7, one 7 |, and one 7, ! must
evaluate to True for any valid input state. We denote projec-
tions of o7 as robot states oropor : Liobot — {True,False},
request states oreq : Zreq — {True,False}, and terrain states

Cterrain © Lterrain — [1¢]. The complete sets of such states are
denoted by X7, iopots 2reqs aNd Dierrain, respectively.

We introduce a grounding function to associate symbolic
input states with their physical interpretations. Let the physical
state space be Z C R”, which encodes the physical world, in-
cluding the robot’s position, orientation, and terrain attributes.
The grounding function G : ¥7 — 2% maps each input state
o7 to the corresponding set of physical states in Z.

For robot states dyobot € Lrobot, We define G(oyonot) = {2 €
Z | g, Ty € Irobobo'robol(ﬂ'm) A Urobot(ﬂ'y) A robot_pose(z) €
cell(z,y)}. Similarly, for request states opq € Xreq, WE
set G(0req) = {2 € Z | Tmp 7y’ € Lreq-Oreq(mz?) A
Oreq(my 1) A request_goal(z) € cell(z,y)}. For terrain states
Oterrain € Lterrains the grounding G(emain) is defined as the set
of physical states whose terrain abstractions are consistent with
Oterrain- G1Ven an input state oz € Yz with projections oopots
Oreq» ANd Orerrain, We combine them as G(oz) = G(0wopor) N
G(01eq)NG(Cierrain) - Finally, we introduce an inverse grounding
function G™! : Z — Y7 that maps each physical state z € Z
back to its corresponding symbolic input state.

In Example 1, the inputs are defined as Ziopot =
{20 M1y T, Tyos Tyy s Tys s Lreq = {7 | ™ € Lygpor }» and
Tierrain == {n¥) | i,j € 0,1,2}, where n¥, = 1 if the grid
cell (z;,y;) is classified as Dense, and ny = 0 if it is Sparse.
The input state shown in Fig. 2(b) is o7 : 7y, + True,my,
True, myy — True, Ty, +— True,ny, — 1 for j € {0,1,2}.
For brevity, throughout this paper we omit Boolean proposi-
tions set to False and integer propositions with value 0 when
describing input states.

The output propositions O represent skills that enable
the robot to move between grid cells under specific terrain
conditions. A skill o € O is defined by its preconditions
Y C Brobot X Lterrain, Which specify the robot and terrain
states from which it can be executed, and its postconditions
YO C Siopot» Which describe the resulting robot state after
execution. In Example 1, the skill oy moves the robot from
the middle cell to the upper cell (Fig. 2b). The precondition
of 0g is X0y = {(Orobots Tterrain) : Tz, — True,m,,
True,n}? — 1,n¥% — 1,nY2 — 1}, while the postcondition
is Y60 = {robot : Tz —> True, m,, — True}. Each symbolic
skill is also paired with a continuous-level locomotion gait,
such as a one-second trotting gait L, which physically realizes
the symbolic transition (Sec. VI-A).

B. Specifications

We adopt the Generalized Reactivity (1) (GR(1)) fragment
of linear temporal logic (LTL) [23] to encode task speci-
fications. An LTL formula ¢ follows the grammar ¢ :=
m|l=ele A el O¢l|Op| Op, where 1 € AP denotes
an atomic proposition, = and A are Boolean operators, and
O (“next”), O (“always”), and ¢ (“eventually”) are temporal
operators. For a comprehensive introduction to LTL, we refer
the reader to [98].

A GR(1) specification is written in the form ¢ = p. — @,
where @, = @ A ¢l A ¢f encodes the assumptions about the
(possibly adversarial) environment, and @5 = ¢l A @l A ©f
represents the guarantees that define the system’s behavior.

For a € {e, s}, the components ¢!, ', ¢ describe the
initial conditions, safety requirements, and liveness objectives,
respectively. In the context of symbolic repair (Sec. VI-C), we
further partition the safety constraints (L, ¢.) into two parts:
skill-related constraints (4K otk and hard constraints
(pihard | pthardy “The skill constraints encode the preconditions
and postconditions of skills (see Sec. VI-B) and are subject
to modification by the repair procedure, whereas the hard
constraints remain immutable.

In practice, GR(1) specifications often become quite large

because they must capture detailed information about both
terrain and task constraints. At runtime, however, the exact
terrain and request states are already available. This allows
us to apply a technique known as partial evaluation originally
defined in [24], where known Boolean propositions are directly
substituted with their truth values. By doing so, we reduce the
overall state space, leading to a smaller and more computa-
tionally efficient specification for synthesis.
Definition 1. Given an LTL formula ¢ and two subsets
STrue’SFalse g AP, STrue e SFalse — (D’ we define the
partial evaluation of ¢ over S™1e GFalse aq p[GTrue GFalse)
where we substitute propositions m € AP in ¢ with True if
7w € ST and with False if 7 € SFalse,

IV. PROBLEM STATEMENT

Problem 1. Given (i) a global goal ggopa, (ii) a set of
possible local request goals Gioeq (iii) a set of predefined
terrain polygons P from user’s prior knowledge, and (iv) a
set of online terrain polygons P,, perceived during execution
that may differ from the predefined ones, (v) a set of predefined
locomotion gaits £; generate controls that enable the robot to
navigate the environment and reach the goal.

V. APPROACH SUMMARY

To address Problem 1 efficiently, we manage complexity on
both symbolic and physical levels. At the symbolic level, we
employ reactive synthesis to break down the local navigation
task into smaller subproblems, which can be reused across dif-
ferent scenarios. Each subproblem involves planning a short-
horizon symbolic transition and is accompanied by solving a
MICP to certify its physical feasibility.

As shown in Fig. 1, our overall framework is composed
of three main modules: offline synthesis (Sec.VI), online
execution (Sec.VII), and low-level tracking control (Sec.VIII).
During offline synthesis, we generate a diverse set of loco-
motion skills and their associated gaits for various predefined
terrain-task combinations. Symbolic repair is applied to dis-
cover additional necessary transitions that may not be captured
initially.

At runtime, we invoke a symbolic repair mechanism to syn-
thesize new transitions when the robot encounters unexpected
terrain conditions or request goals not seen during offline
planning. This allows the framework to remain flexible and
adaptive to dynamically evolving environments. Additionally,
the system re-targets the desired pose during each transition
to reflect current terrain constraints and coordinates between
the planner and tracking controller to handle potential delays
in MICP solving without compromising execution continuity.

VI. OFFLINE SYNTHESIS

The offline synthesis module builds a strategy that allows
the robot to reach local request goals under predefined terrain
conditions. As shown in Fig. 3(a), the module takes in local
request goals Giocal, terrain polygons Py, from prior maps,
and a set of locomotion gaits £ specified by the user. We
first apply the inverse grounding function G™! to discretize
the local environment, deriving a set of candidate request
states Theg” C Yreq from the local request goals and mapping
the predefined terrain polygons into possible terrain states
S in C Sterrain- Afterward, we evaluate the feasibility of each
candidate skill using a gait-fixed MICP formulated with the
provided locomotion gaits (Sec. VI-A), and record all feasible
transitions as symbolic skills in the specification (Sec. VI-B).
To improve efficiency, a high-level manager then generates
partial evaluations of the encoded specifications. Whenever
one of these partial evaluations is deemed unrealizable, a
repair mechanism is invoked: it proposes additional symbolic
skills, whose feasibility is validated through gait-free MICP.
This process ensures that the specification ultimately becomes
realizable (Sec. VI-C).

A. Locomotion Gait and Feasibility Checking via MICP

We assume each locomotion gait L is characterized by
a contact sequence G and its associated time durations 7T,
formally written as L = M(G,T). Each skill is tied to a
distinct locomotion gait, which dictates how the robot executes
motion at the continuous level. As illustrated in Fig. 3(a), since
the offline phase has access to the complete set of request
states Yhe® and terrain states Yoo | we can systematically
enumerate all possible symbolic skills that enable navigation
across the different local environments. The feasibility of each
skill is then evaluated through gait-fixed MICP using the given
locomotion gaits. In most examples shown in this paper, we
assume the robot is only allowed to move horizontally and
vertically by one cell and we show diagonal movements and
heading angle change in Sec. IX-F.

Then the next critical step is to find whether there exists
a locomotion gait for each skill to be physically feasible. We
leverage mixed-integer convex programming (MICP) to check
the physical feasibility given a set of predefined locomotion
gaits, and only use the feasible one as robot skills to synthesize
robot strategies. The MICP problem takes in the centroidal
states Zyohot from the precondition and postcondition of the
skill as its initial and final conditions, which are located at
the center of each abstracted cell. A set of homogeneous,
predefined terrain polygons are considered in the MICP as
steppable regions corresponding to the terrain states Zierin
involved in the precondition. Lastly, the contact information
G and T is provided by the selected locomotion gait L. Fig. 4
shows the maneuver of the quadruped robot Go2 after solving
the MICP problem corresponding to skill ag in Example 1
with a one-second trotting locomotion gait. The generic MICP

Request Goals SF

Predefined
Goals

Online
Goal

Terrain Polygons /-

Predefined
Polygons

|

Online
Polygons

(a) Offline Synthesis l i (b) MICP Planner l (c) Online l l)
Encoded nt Execution gt
Abstraction ———— Potential ———3 Locomotion Trot coded Into Abstracton ————— =
Skills Gaits
lgmm o¢ Bound W Oreq; 0€
Continue Automaton S
Yes — ynthesized
— Realizable? «— Specification T No l \Z,A
e min 3 C(¢li), urlil) e : :
No Feasible? Gar\%(’:‘,léed ol (Gait Fixed
St Bl0] = dui MICP
. AN ~1] = bina /
Symbolic Hard (—I i+ 1] = D(9[),vi € [N]
Repair Constraints ~ Skills g H,i) =0 Yes @
l - hi¢,H,9) 20 Feasible?
No Feasible? Gait-Free ' | T No Round 0 Round 1 Round N
. MICP
N " ¢
St "> NoRepar 8l T —
: Possible g 3 \\a ~~ Repair
LYes) o
Strategy A

Fig. 3. System overview. During offline synthesis (pink arrows), an initial set of locomotion gaits is provided, and symbolic skills are iteratively generated
by solving the MICP. When the task specifications are unrealizable, a symbolic repair is triggered to seek missing skills. During the online execution (black
arrows), MICP is solved again taking online terrain segments and the symbolic state only advances when a solution is found. A runtime repair (blue arrows)
is initiated if a solving failure occurs, or an unseen terrain or request goal is encountered.

Fig. 4. Demonstration of decision variables and polygons when solving MICP
for skill ag in Example 1 using a trotting locomotion gait.

problem considered in this work can formulated as:

N-1

1;1711;11 - C(¢[i]a¢refm)

s.t. @[0] = Pinit (1a)
¢[N - 1] ¢ﬁnal (lb)
¢li +1] =D(@[1]), Vi € [N] (1o)
g(¢, H,i) = (1d)
h(¢, H,4) > 0 (le)

where the decision variables ¢ denote the continuous variables
and H indicate the binary variables across the entire N
timesteps. For any natural number n € N, we denote the set
{0,...,n — 1} as [n]. The general equality constraints g(-)
and inequality constraints h(-) are incorporated and activated
at certain time stamp ¢. The cost function depends on both the
continuous variables ¢ and a reference trajectory .

The reference base position and angular trajectories are
generated by linearly interpolating between the initial and final
conditions. For scenarios with significant elevation changes,

such as jumping onto higher terrain, an additional middle
keyframe is introduced for the pitch angle to calculate the
slope angle between the initial and final poses. The final ref-
erence pitch trajectory is then created by evenly interpolating
between the initial, middle, and final poses. The reference EE
trajectory relative to the base frame Bp;-ef remains constant
and moves in sync with the reference base trajectory.

Given a specific locomotion gait, we first introduce the gait-
fixed MICP formulation:

1) Continuous Decision Variables: The continuous deci-
sion variables ¢ include base position r, velocity r, accelera-
tion ¥, orientation 6 parameterized by Euler angle and its first
and second-order derivatives 9, 6, individual end-effector (EE)
position p;, velocity p;, and acceleration p;, and individual
contact force f; for the foot j with j € [ny], where ny = 4
denotes the index of feet. The compact form can be expressed
as:

=" i"i7.07,0".6"p] b/ B/ £ @

2) System Dynamics: We encode the system dynamics as
a simplified single rigid body in Eq. (3), using a double
integrator to replace the original Euler equation to keep the
dynamics constraint convex. The whole system is discretized
through Backward Euler integration with At between each

time step.

r[i + 1] r[i] + At - r[i + 1]
#[i + 1]] + At - #li + 1]
mili] | = | 2§ +me 3)
0fi + 1] 0] + At - 0[i + 1]
6li + 1] 0[i] + At - 0[i + 1]

where m is the robot mass and g is the gravity term.

3) Cost Function: The cost function consists of tracking
costs and regularization terms governed by diagonal matrices
Q and R.

C = 6¢qli]" Q 5qli] + drli]" Rorli] 4)

where d¢pg and ¢ are defined as:

T — Ipef 2

5¢Q = | 60— 0 a¢R = | (5)
pi — pr_ef P;
J J fj

Tracking costs include deviation from the desired base
and foot EE trajectories. The regularization term includes
minimizing the base acceleration, Euler angle acceleration,
EE acceleration, and contact forces to encourage motion
smoothness. The weights for the tracking terms are defined
in Table I.

4) Safe Region Constraint: To incorporate safe region con-
straints for selecting proper footholds, we introduce binary
variables H,.j, ;, with 7, k, and j expressing the rt convex
region, k*® footstep, and j** foot and r € [R], k € [n]. One
footstep is defined as a full swing phase for a foot. We use n
and R to represent the number of footsteps specified by the
gait configuration and the number of convex terrain polygons
to be considered. For example, Fig. 4 shows a case with eight
polygons. Egs. (6) - (7) restrict the robot’s EE to stay within
one of the convex polygons when the corresponding binary
variable H, ;. ; is True. Each polygon is parameterized by an
inequality constraint (A, and b,.) that defines multiple half-
spaces, along with an equality constraint (A.q,, and b ,-) that
ensures the foothold position lies on a 3D plane. We use Cy ;
to denote the set of time steps indicating stance after the k'P
footstep for the ;" foot and the safe region constraint only
applies to the first stance time step represented as Cy ;[0].
Note that, during the offline phase, the terrain polygons are
homogeneous and predefined.

Vr € [R], k € [ng],j € [ny]

H, ;= A.p;[i] <b,,Vie C ;0] (6)
Acq.rp;i] = beqr, Vi € C 5[0] (7)

R—1

D Hu,=1 8)

r=0

Hr,k,j € {0, 1} (9)

5) Frictional and Contact Constraints: Frictional con-
straints are defined in Egs. (10) - (11), with n, and F, as
the normal vector and friction cone of the 7" convex region
corresponding to the x and y dimensions of the EE position
p;”’. Contact constraints in Egs. (12) - (13) forces the EE
velocity to be zero during stance phase and the contact force
to be zero during the non-contact phase. C; represents the set

TABLE I
TRACKING COST WEIGHTS
Cost Term Weights
T —rer | (1000.0, 1000.0, 1000.0)
0 — B¢ | (1000.0, 1000.0, 1000.0)
p; — P | (1000.0, 1000.0, 1000.0)
¥ (10.0, 10.0, 10.0)
0 (10.0, 10.0, 10.0)
P (0.5, 0.5, 0.5)
f; (0.1, 0.1, 0.1)

of all time steps indicating stance for the ;' foot.

Vr € [R], k € [nd],5 € [ny)

H,..; = f[] nT(pf”[z]) >0, Vi€ C (10)

£;i] €]:,,.(/L,nr,p?y[i]), Vi € Cy, ; (11)
p;lil =0, Vie(; (12)
£;li] =0, Vi ¢ C; (13)

where p denotes the friction coefficient.

6) Actuation Constraint: Since the joint angles are omitted
in the single rigid body model, we use a fixed Jacobian
J; (qff) at a nominal joint pose q;-ef for each leg to approxi-
mately consider the torque limit constraint in Eq. (14). In addi-
tion, since the translational and angular motions are decoupled,
another actuation constraint on the angular acceleration is also
added in Eq. (15).

Vi € [N],j € [ng]
J5(af") TE[i] < Tinax
16[i] < 7iax

(14)
15)

where Tiax is the joint torque limit, 77, is the torque limit
applied on the base, and I is the moment of inertia for the
approximated single rigid body.

7) Kinematics Constraint: Lastly, the kinematics constraint
in Eq. (16) strictly limits the possible EE movements to
assure safety. Due to the convex nature of this MICP, we can
determine the feasibility of a possible symbolic transition by
checking if the optimal solution exists.

Ep5rli], O, PT), Vi € [N, € [ny]

pyli] € Ry((16)
where R ; is defined as a 3D box constraint around a nominal
foot EE position based on the base position and orientation,
and constrained by a maximum deviation p7“*. Note that the
reference orientation O, is used to avoid nonlinear constraint

keep the problem convex.

B. Task Specification Encoding

After identifying a set of feasible robot skills, we encode
them into the specification ¢ as part of the environment safety
assumptions ¢ and the system safety guarantees .

The environment-side skill assumptions @i capture the

postconditions of each skill. These assumptions enforce that

whenever a skill’s precondition holds and the skill is executed,
at least one of its associated postconditions must also hold:

A= ADion A

0€EQ o €XP° ™€ Liobot UZterrain

-V A\ O =oa(n)

o€ Z‘me T E Lrobot

m=o(m))

7)

In Example 1, the postcondition of skill og is defined as
O(oo A gy Ay, An¥0 =1ARY =1ARY2 =1A...
= Ontgg ANOmyy A1)
(18)
The system-side skill guarantees g**"" encode the precondi-
tions associated with each skill. These guarantees restrict when
a skill may be executed by the robot. Specifically, a skill is
permitted to run only if at least one of its preconditions is

t,skill

satisfied:

A= AD(Y A O =o(m)
ocO [AS Z]:;‘e 7€ Liobot Uterrain (19)

—-00)

In Example 1, the precondition of skill oy is defined as
O(—(Omgy A Omyy AORY =1AOnY! = 20)

On¥% =1A..)—>—|Ooo)
t,hard t,hard

The hard constraints "™ and "¢ are constraints that
a repair cannot modify (see Sec. VI-C). Our system’s hard
constraints 4" only allow the robot to execute one skill at a
time: O(=(QoA(0’)), for any two different skills 0,0’ € O.
Given that, we encode the following hard assumptions 4"

(i) the uncontrollable terrain and request inputs cannot
change during execution: (7 < Om), V7 € Lierrain U
Zreq» and

(i1) the robot inputs Z;opoe remain unchanged if no skill is

executed: D(Noco —0 — /\ﬂezmbm(w & O’]T))

C. High-level Manager and Symbolic Repair

Similar to [24], we design a high-level manager to efficiently
synthesize controllers for encoded specifications under given
sets of terrain and request states. The manager takes as input
the specification ¢, a predefined collection of terrain states
Sy C Yermain, and a predefined set of request states
Yhq C Xieq For each pair (Giemains Oreq) € Dhomain X Steq »
the manager first converts the integer-valued terrain state

: Zierrain — [n¢] into a Boolean representation o2 . :
B . — {True, False}, following the approach in [97]. We
then overload o5 . and o, to denote the propositions that
evaluate to True. Using this, the manager generates a partial
evaluation 90, = (p[gtlzrrain U Ureq7It§rrain U Ireq \ USrrain U Ureq]
(see Definition 1). Skills whose preconditions are evaluated
to False under the partial evaluation are discarded, which re-
duces the specification to robot inputs Z,oc and a smaller skill
set as outputs. This step prevents exponential growth of the
synthesis procedure in the variable size. Finally, the manager
synthesizes a strategy A, for each reduced specification.

If ¢’ is unrealizable, this indicates that gait-fixed MICP
feasibility checks (Sec. VI-A) failed to produce sufficient skills

O'terrain

to reach the request under the given terrain. To address this, we
rely on gait-free MICP (Sec. VI-D), which relaxes the fixed
contact sequence and timing constraints while retaining the
continuous dynamics. Since gait-free MICP is computationally
demanding, we employ symbolic repair [95] to generate tar-
geted symbolic suggestions that minimize unnecessary solves.
Symbolic repair works by systematically modifying pre- and
postconditions of existing skills to propose new candidates.
These suggestions are then validated by gait-free MICP; if
feasible, they are incorporated into the specification, making ¢’
realizable. An illustration of this process is shown in Fig. 2(c),
where repair alters the postcondition of a skill from reaching
(22,90) to instead target (xo,yo), thereby enabling the robot
to satisfy the request.

D. Gait-Free MICP

We aim to implement the suggested skills by reconfiguring
the contact sequence and timing to generate new locomotion
gaits. This can be achieved by solving a gait-free version of
MICP in Eq. (1). The gait-free MICP retains all continuous
decision variables and constraints from the gait-fixed MICP
but modifies the contact state-dependent constraints, as the
contact sequence and timing are no longer fixed. Instead of
using H,. ;. ;, we introduce a different set of binary variables
H, ,, ; for defining the contact state for each foot at each time
step explicitly. » and j still represent the 7" convex region
and j* foot, respectively, while m € [M] denotes the m'"
time step, evenly discretized with At,,, over the entire M time
steps. We use Oy, 41 to denote the set of continuous time
steps that span from the m'™® to the m + 1'" binary time step.
As a result, the following constraints are modified:

1) Safe Region Constraint: The safe region constraint is
defined in Eq. (21) - (22) similar to the gait-fixed case in
Eq. (6) - (7) when a binary variable H,. ,, ; is activated.
Different from Eq (8), the summation of the binary variables
at m*™ time step for the j*" foot is allowed to be zero to

generate a swing phase as shown in Eq. (23).

Vr € [R],m € [M],j € [nyg]
H, .. ;= Ap;i] <b,, Vi€ Onmi 21)
Aeq rpj[] = beq,mvz € Om,m+1 (22)
R—1
H,, ;< (23)
r=0
H,. ;< {0,1} 24)

2) Frictional and Contact Constraints: Different from the
gait-fixed case in Eq. (10) - (13), the activation of frictional and

contact constraints is purely decided by the binary variables.

Vr e [R],m € [M],j € [n/]

H,.; = Gl n.(0]]) > 0.¥i € Opmia (25)
fj [Z] € Fr (:ua n,, p;y[z]),VZ € Om,m—H (26)

R—1
H,,.,=1 = p;[i]=0,Vi€ Opnmi1 (27)

r=0

R—1
Hr,m,j =0 = fj [’L] =0,Vi e Om,m+1 28)

r=0
Compared to gait-fixed MICP, gait-free MICP introduces
more binary variables to determine contact states, resulting in
longer computation times. As such, it is only triggered after
performing symbolic repair.

VII. ONLINE EXECUTION

Due to the inevitable disparity between offline synthesis
and real-world online terrain conditions, such as variations in
terrain shape and position, additional efforts are required to
bridge this gap and prevent potential execution failures. The
online execution module takes in terrain states Oierain < Zterrain
after abstracting the terrain polygons online, a request state
Oreq C Zreq> and a strategy A from the offline synthesis module
(Sec. VI). This module then executes the strategy automaton
A by solving a MICP problem online again with the actual
perceived terrain polygons, potentially different from the ones
abstracted offline, to generate a reference trajectory for each
transition (Sect. VII-A). This reference trajectory along with
the corresponding contact information will be further tracked
by a tracking controller in real time (Sec. VIII). As shown by
the blue lines in Fig. 3(c), if the robot encounters an unseen
terrain state, we leverage online symbolic repair to create
new skills that handle the unexpected terrain state and failure
transition at runtime (Sec. VII-B). After reaching the request
state oreq, the robot resets the strategy with a new terrain state,
request goal states, and repeats the execution until reaching the
final goal state.

A. Strategy Automaton Execution and Online MICP Modifi-
cations

The red path in Fig. 3(c) represents the automaton online
execution process. Before transitioning to the new symbolic
state, an online gait-fixed MICP is solved according to the
skill provided by the automaton. The automaton advances only
if the MICP successfully finds a solution. Slightly different
from the gait-fixed MICP formulation during the offline phase,
the online gait-fixed MICP is executed given accurate terrain
information from a terrain segmentation module. For example,
a skill transitioning from flat terrain to high terrain, as shown
in Fig. 5(a), uses predefined, homogeneous terrain polygons
for feasibility check during offline synthesis. Given that,
Fig. 5(b) illustrates how the terrain polygons detected online
for the same skill may differ from the offline ones in both
position and geometry. In addition, the following modifications
are highlighted when attempting to transition between two
symbolic states in the automaton.

Fig. 5. Demonstrations of (a) offline MICP for a skill transitioning from a

flat terrain to a high terrain with predefined polygons; (b) online MICP for
the same skill but with online terrain polygons.

()

1) Robot Pose Re-Targeting: Since the final targeting con-
dition significantly influences the reference trajectory and the
feasibility of the MICP problem, we evaluate the final condi-
tion by solving a kinematic feasibility problem (a simplified
MICP in Eq. (1)) before solving the online MICP. Compared
with the gait-fixed MICP, the dynamics equation (3) is replaced
by enforcing the center of mass (CoM) to lie inside a convex
support polygon with all feet in stance to ensure static stability.
In addition, a hard constraint is added to ensure that the
modified robot pose stays within a certain threshold compared
with the original desired pose. The cost function is simplified
to stay as close as possible to the original desired pose. The
higher-order terms of body position, orientation, and end-
effectors are excluded from the decision variables. All the
other constraints not involving those higher-order terms remain
the same. Once the kinematic feasibility problem is solved
successfully, the online MICP is solved using the modified
re-targeted final condition and reference trajectory.

2) Collision Avoidance and Swing Foot Constraints: Since
the trajectory generated by the online gait-fixed MICP is
directly sent to a tracking control module later, high-quality
end-effector (EE) trajectories are crucial to ensure collision
avoidance and sufficient swing foot clearance from the terrain.
To achieve this, we first introduce more binary variables
H, , ; for defining the collision-free region selection for the
40 foot at each time step. Specifically, s € [S] represents the

sth convex collison-free region and w € [W] denotes the w'®

time step, evenly discretized with At,, over the entire W time
steps. Fig. 5(b) demonstrates two collision-free regions.

Vs e [Sl,w € [W],j € [ny]

Hs,w,j = Aspj [Z] < bS7Vi S Cw,erl (29)
S5—1
> Hop, =1 (30)
s=0
H, ., {01} 31

where C,, ,+1 denotes the set of continuous time steps that
span from the w'® to the w + 1'" binary time step.

To enable larger swing foot clearance from the terrain in
case of non-trivial tracking errors, we also add constraints to
force the swing foot height above a user-defined threshold
hswing> given the fixed contact timing.

Note that the collision avoidance and swing foot constraints
are also incorporated during the offline MICP as part of the
feasibility checking rules. However, we highlight it here due
to its critical impact on the tracking performance.

B. Runtime Repair

The runtime repair procedure takes as input a terrain state
Oterrain € Dterrain, @ TEQUESt State Oreq € Yireq, and a Boolean
formula @gisaow that encodes disallowed transitions identified
at runtime. We first update the system’s hard constraint ¢}
in the specification ¢ (see Sec. VI-B) to ¢! A Dgisaliows
ensuring that the specification reflects these newly discovered
restrictions. Next, the high-level manager constructs a partial
evaluation of ¢ OVer ierain and orq. Symbolic repair is then
applied to generate additional robot skills and synthesize a
new strategy that accommodates the current terrain and request
states, following the approach in Sec. VI-C.

VIII. TRACKING CONTROL

The tracking control module adopts an MPC-Whole-Body-
Control (WBC) hierarchy, ensuring precise end-effector (EE)
and centroidal momentum tracking. To smoothly and effi-
ciently execute the strategy considering the potential computa-
tional delay in solving MICP, a harmonic coordination module
between the strategy automaton roll-out and the tracking
module is designed (Sec. VIII-B).

A. Tracking Control Module

1) Nonlinear Model Predictive Control (NMPC): The
NMPC operates independently from the symbolic planning
module, tracking reference trajectories generated by the online
MICP using a more accurate dynamics model. In this work,
the NMPC accounts for the robot’s centroidal dynamics and
kinematics, similar to approaches in [99]-[101], presenting a
more accurate model than the simplified angular dynamics in
the MICP. An analytical inverse kinematics solution based
on the MICP output provides the full joint state reference
trajectory for the NMPC. In addition to standard frictional and
contact constraints and base tracking costs, an additional cost
function for EE reference tracking from the MICP is included
to enhance precision. The NMPC optimization problem is

PT - Planning Time
TT - Trajectory Time

State 0 State 3
D <D

Strategy
Execution

PT PT

Tracking
TT
Module

1
|
1l
1
T
!
i
i
i
|
i
i

.
>

@ time (s)

Strategy
Execution

PT

Tracking
i Module

time @)
(b)

Fig. 6. Coordination between strategy execution and tracking control module.
(a) The MICP solving time (denoted by PT) for transitioning from State 1 to
State 2 is shorter than the time horizon of the previous reference trajectory
(denoted by TT), allowing the seamless appending for the new trajectory. (b)
The MICP solving time exceeds the time horizon of the previous reference
trajectory, requiring the robot to come to a stop (red) and wait for the new
trajectory whenever available.

formulated as a Sequential Quadratic Program (SQP) and
solved using the OCS2 library [102], with a time horizon of
one second and 100 knot points.

2) Whole-Body Control (WBC): While NMPC operates at
the centroidal level to generate dynamically feasible trajec-
tories, WBC ensures precise execution by resolving full-body
state control, including joint torques, accelerations, and contact
forces. The whole-body controller tracks the NMPC trajectory
by solving a weighted quadratic program (QP) [103] at 500
Hz. To improve the performance of agile motions such as
leaping and jumping, centroidal momentum tracking [104] is
included. This MPC-WBC hierarchy allows the system to han-
dle both centroidal-dynamics-level and full-body-dynamics-
level control in a coordinated manner, ensuring robustness in
real-world deployment especially for highly dynamic motions
such as jumping.

3) State Estimation: The state estimator employs a linear
Kalman filter similar to that in [105], with the addition
of OptiTrack motion capture (mocap) measurements fused
alongside IMU data and joint encoder readings to achieve
accurate body position estimation. For agile motions such
as jumping, we observed improved base-height estimation by
assigning higher noise values to the mocap feedback during
aerial phases, due to its limited 120 Hz update rate.

B. Coordination between Strategy Execution and Tracking
Module

Due to the potential delays in solving MICP during the
strategy automaton roll-out, a harmonic coordination between
the strategy execution and tracking control module is essential.

The tracking module’s reference trajectory is updated dynam-
ically alongside the strategy execution process, as shown in
Fig. 6. The overall process can be summarized as follows:

1) Strategy Execution: The strategy automaton execution
thread begins by solving the online gait-fixed MICP, starting
from State O in the automaton. Once the MICP solution
is obtained, it immediately sends the reference trajectories
and corresponding contact information to the tracking control
module. The automaton then progresses to the next transition,
using the final condition in the previous trajectory segment as
the new initial condition. In Fig. 6, the colored blocks in the
strategy execution timeline indicate the time taken for each
MICP solve during the automaton roll-out. PT and TT denote
the planning time and trajectory time, respectively.

2) Tracking Control Module: The MPC-WBC tracking con-
trol module receives time-indexed reference trajectories, which
can be updated in real-time. After completing the tracking of
the current reference trajectory, the robot returns to a stance
phase, ready to accept new reference trajectories. As depicted
in Fig. 6, the colored blocks in the tracking control module
represent the time horizon of each reference trajectory sent
by the strategy execution thread. Once the initial reference
trajectory is generated, the MPC-WBC thread begins tracking
it using more accurate dynamics models, as described in
Sec.VIIIL.

3) Delay Handling: For more complex scenarios involving
a larger number of terrain polygons, the MICP solving time
may increase and exceed the time horizon of the generated
reference trajectory. Fig. 6(a) and (b) illustrate two cases of
MICP solving times: Case (a): The solving time for transition-
ing from automaton State 1 to State 2 is shorter than the time
horizon of the previous reference trajectory. In this case, the
new reference trajectory is seamlessly appended to the existing
one, and the robot continues tracking the previous trajectory.
Case (b): The solving time exceeds the time horizon of the
previous reference trajectory, and the robot has already entered
a stance phase (red block) when the MICP solution is obtained.
In this case, the robot waits until the newly generated reference
trajectory is sent based on the current system time (red block
in Fig. 6 (b)).

IX. SIMULATION

We present examples of maneuvering across diverse envi-
ronments in a Gazebo simulation to demonstrate the frame-
work’s efficacy, scalability, and generalizability as in [24]. In
addition, benchmarking experiments are conducted to further
compare our proposed framework with pure MIP approaches.

A. Robot Setup

As shown in Fig. 7, we verify our algorithms on two
separate robot platforms, Unitree Go2 and SkyMul Chotu (a
modified Unitree Gol robot dedicated for rebar tying tasks).
The SkyMul Chotu is equipped with a rebar gun mounted
on its head and customized “cross’-shaped feet designed
for reliable standing on rebars. Note that in simulation, this
foot shape is simplified to a regular round foot to avoid
the complexity of simulating contact with irregular surfaces.

Unitree Go2 SkyMul Chotu

Regular round foot

Rebar gun

"Cross" shape foot

Fig. 7. Hardware platforms used for experiments: Unitree Go2 and SkyMul
Chotu (equipped with a rebar gun and “cross”-shaped feet).

TABLE I
ROBOT PARAMETERS

Parameter Unitree Go2 SkyMul Chotu
m (kg) 15 20
Tmax (N - m) (23.5, 235, 45.4) (23.5, 23.5, 33.5)
q;?f (rad) 0.0, 0.72, -1.44) (0.0, 0.72, -1.44)

Bprjef (m) (0.1805, 0.1308, -0.29) (0.2118, 0.210, -0.30)
p;‘.‘h" (m) (0.15, 0.1, 0.15) (0.15, 0.1, 0.15)
I (kg - m?) diag(0.152, 0.369, 0.388) | diag(0.396, 0.915, 1.107)

In our planner, we model both cases as point contact. The
parameters for each robot are defined in Table II and used in
our implementation, including the robot mass m, torque limit
Tmax and the reference joint position qg."'f for a single leg with
three joints, the reference foot position relative to the base
frame Pp’’ and the maximum deviation of the foot position
p;** for the front left leg (j = 0), and the moment of inertia
of the approximated single rigid body I.

B. Simulation Environment Setup

To demonstrate the generalizability of our proposed frame-
work, we evaluate it across two scenarios involving differ-
ent terrain types, safe stepping regions, and robotic plat-
forms—Unitree Go2 and SkyMul Chotu. Obstacles are mod-
eled as a distinct terrain class, and obstacle avoidance is en-
coded as hard constraints within ¢}. The requested waypoints
are assumed to be free of obstacles. We test both 3 x 3 and
5 x 5 grid abstractions. The 5 x 5 grid enables a longer
planning horizon but introduces higher decision complexity.
For discretization, we use a cell size of 0.8 m in unstructured
terrains and 0.6 m for the rebar case. These values can be
adjusted based on the requirements of specific deployment
environments.

1) Unstructured Terrain: We abstract 8 terrain types—flat
terrain, high terrain, low terrain, dense stone, sparse stone,
gap, high gap, and low gap—based on classification criteria
involving polygon heights, counts, and areas relative to the
abstracted grid cells. A terrain is categorized as a gap when
the ratio of its overlapping area with a grid cell falls below
a specified threshold. We define two terrain configurations:
one consisting of four selected terrain types, and another
comprising all eight. These are illustrated in Figs. 8(a) and
8(b), respectively.

2) Rebar Terrain: Inspired by efforts to automate labor-
intensive rebar tying tasks on construction sites [81], we

(a) Unstructured - 4

(b) Unstructured - 8

Fig. 8. Unstructured and rebar terrain scenarios (presented in [24] as well).

investigate a second case study in which a quadrupedal
robot navigates a rebar mat. Each rebar is modeled as a
rectangular polygon with a 3 cm width. Unlike the stepping
stone scenario, this setup presents a denser distribution of
potential footholds due to the higher rebar density. Notably,
the robot’s traversability depends on the directional sparsity of
the rebars—whether aligned with or orthogonal to the robot’s
facing direction—within an acceptable tolerance.

We abstract and classify rebar types based on horizontal
sparsity (perpendicular to the robot’s facing direction) and
vertical sparsity (parallel to it). Within each abstracted cell,
the number and spacing of rebars are evaluated to classify
the sparsity in each direction as dense (0.05-0.15 m), sparse
(0.15-0.35 m), extreme sparse (above 0.35 m), single, or none.
To reduce complexity, combinations deemed too challeng-
ing—such as none or single in both directions—are treated
as obstacle. Based on this abstraction, we define two example
configurations comprising 7 and 14 rebar terrain types. The 7-
type configuration in Fig. 8(c) samples rebar sparsity randomly
between 0.15 and 0.35 m, omitting extreme sparse regions.
In contrast, the 14-type configuration in Fig. 8(d) includes
sparsity ranging from 0.15 to 0.6 m, encompassing more
complex and difficult combinations including extreme sparse

types.

C. Offline Synthesis Results

We evaluate the offline synthesis module for both Unstruc-
tured and Rebar Terrain scenarios by initializing the skill set
with two trotting gaits (2 s and 3 s). The inclusion of the
longer-horizon trotting gait provides additional safer walking
options from a practical standpoint. Prior to synthesis, we
construct the set of possible terrain states ¥, . —assumed to
be provided by the user—by systematically sweeping a local
grid over the entire terrain map, based on the best available
prior knowledge. The set of request states Yl is defined as

r
%

o

N - a0

D

i
=

771 11
y/Aau A
y/am s
(c) Rebar -7

(d) Rebar - 14

the top row of the local grid in the robot’s facing direction,
with the two corner cells also included to enable movement
in diagonal directions.

We briefly summarize the key offline synthesis statistics
previously reported in [24]. Specifically, the repair process
was shown to successfully handle approximately 93.4% of all
terrain and request state pairs (Giermains Oreq) € Liamain X Sreq -
The remaining 6.6% were unrepairable due to either unreach-
able request states caused by obstacles or physical infeasibility.
Notably, the number of newly discovered skills was reduced
by 71.6-97.6% compared to checking the full space of all
possible skills, each requiring the solution of a costly gait-
free MICP. On average, generating a new locomotion gait via
gait-free MICP took 27.23 s, with a maximum time of 145.66
s. These results demonstrate the effectiveness of the offline
repair strategy in minimizing expensive MICP solves. For a
full breakdown of synthesis time, number of symbolic states,
and repair outcomes, please refer to [24] (Table I).

D. Online Execution Results

Fig. 8 presents snapshots of Go2 and Chotu navigating
various terrains during online execution. The robot is tasked
with reaching a global waypoint using a naive global shortest-
path planner. At each step, the local waypoint is selected as
the closest non-obstacle cell in the local grid map pointing
toward the global target.

In Fig. 8(a), the robot traverses a sequence of terrain types
including flat terrain, dense stepping stone, sparse stepping
stone, and gap. Fig. 8(b) showcases a more complex maneuver
involving all eight terrain types, including elevation changes,
where the robot adaptively selects suitable locomotion gaits.
Similarly, Figs. 8(c) and (d) illustrate Chotu traversing rebar
terrains with 7 and 14 defined rebar types, respectively. No-
tably, the robot utilizes newly discovered leaping gaits with
short aerial phases to execute challenging transitions—such

TABLE III
ONLINE GAIT-FIXED MICP SOLVING TIME FOR SIMULATION

13

1L
10 S Dense Rebar

MIP/Solve Time (s)
=
=3

)
i

N
L

Scenario Collision Avoidance | Binary Variables | Continuous Variables | Number of Polygons | Solve Time (s)
Unstructured - 4 No 52 6583.5 6.5 0.37
Unstructured - 8 Yes 256 5166 2 2.65

No 69 7938 7.5 0.49

Rebar - 7 No 70 7938 7.875 1.11

Rebar - 14 No 58 8142.75 6.25 1.09
T T T T T
102 | Terrain Type
[Sparse Stone
Dense Stone
Sparse Rebar

1 ‘
2.0

1.0

I I 1 | I
3.0 4.0 5.0

Time Horizon (s)

Fig. 9. MIP solve time benchmark. Four scenarios including sparse stepping stone (blue), dense stepping stone (yellow), sparse rebar (green), and dense rebar

(red) are evaluated with time horizons ranging from 1 - 5 seconds.

Tl

Fig. 10. Demonstration of the robot executing multiple turning behaviors to
continuously progress toward the global waypoint on terrain arranged in a
zig-zag pattern.

as moving from lower to higher elevations or crossing over
gaps and extreme sparse rebar segments, as demonstrated in
Figs. 8(b) and(d).

Table III summarizes the average number of decision vari-
ables, terrain polygons, and solve time for each scenario,
computed across all step transitions in a full locomotion run
with the online gait-fixed MICP. On average, the online gait-
fixed MICP takes 430 ms to solve the unstructured terrain
cases and 1.1 s for rebar cases when the collision avoidance
is disabled. The rebar scenarios exhibit 155.8% longer solve
times due to their overlapping, skewed rebar arrangement, and
a larger number of terrain polygons. Additionally, enabling
collision avoidance (necessary for Unstructured - 8 case to
handle the elevation change) increases the number of binary
variables by 271.0%, increasing the solve time by 440.8%
(highlighted in red).

E. Benchmark: Pure MIP Planner

To evaluate how the symbolic planning benefits the overall
planning framework, we benchmark our method against pure
MIP approaches, where we implement a planner to evaluate
how computation time scales with the planning horizon and
terrain complexity. Specifically, we examine five planning
horizons ranging from 1 s to 5 s. In addition, we vary
the terrain types by considering sparse stepping stones (0.15
m spacing), dense stepping stones (0.05 m spacing), sparse
rebar (0.3 m spacing), and dense rebar (0.15 m spacing), as
illustrated in Fig. 9 with specific colors.

The benchmarked planner is configured to solve only gait-
fixed MICP; we omit gait-free MICP due to its significantly
longer solve time in longer horizon setup that are more than
2 s. For a given planning horizon, the local planning region
is linearly expanded to increase the traversable distance. The
locomotion gait is repeated cyclically on a 1 s trotting pat-
tern. During execution, the planner—similar to our proposed
framework—receives a global waypoint and incrementally
computes local waypoints, selecting the farthest reachable
position within the local planning region.

As shown in Fig. 9, the histogram illustrates the average
time to solve the MIP in different scenarios and time horizons.
The results show that, within the same scenario, the MICP
solve time increases almost exponentially with the planning
horizon. Furthermore, dense rebar and stepping stone scenarios
consistently require longer solve times than their sparse coun-
terparts, due to the larger number of terrain segments involved
in the optimization. In our proposed method, we primarily use
2 to 3 s gait horizons for each symbolic transition, striking
a balance between computational efficiency and sufficient
planning foresight. This choice avoids overly short myopic
horizons, while still allowing for adaptive gait behaviors.

Fig. 11. Hardware experiment demonstration for the first unstructured terrain scenario with sparse stepping stones and flat terrains.

E. Extension: Locomotion with Yaw Command

In the previous examples, we assume that the yaw angle of
the robot base is fixed to simplify the problem. However, the
robot’s physical capability to traverse terrains largely depends
on the base orientation. For instance, performing a forward
jump onto a high terrain is different from a sideway jump,
in terms of both leg kinematics and dynamics. Therefore, to
showcase the flexibility and generalizability of our framework,
we provide an extension to the existing abstraction of the robot
state to allow the orientation variation.

Specifically, the robot inputs are now defined as Zopor =
{re | 2 € X}U{n, | v € YV} U {myaw | yow €
W}, where we define a new set of yaw angles W =
{—180°, —-90°,0°,90°, 180°}. Note that, a finer discretization
of the yaw angles can be defined as needed. Similarly, the
request inputs are defined as Zreq == {7z | € X} U {my"
y € Y} U {myaw | yaw € W}. The robot and the request
input can be further divided into translational Z'ans 7trans

Tobot? ~~re
and rotational parts If(fli)‘(’)‘:, Ifgée“, where the translational onilas
contain the x and y states and the orientational ones contain
the yaw state.

The skill is further divided into translational and rotational
skills. A translational sKill Ogans € Ouans consists of sets
of preconditions X5 C Yigpot X Lterain that include the
full robot state, and translational-only postconditions X5 C
E;gag‘;t. A rotational skill in place Ogien € Oorien CONSISts
of sets of rotational-only preconditions X5, C X%en and
postconditions Xhs. C X% The terrain state can also
be incorporated when generating rotational skills, particularly
for terrains that pose challenges for turning. However, we
omit this in our current implementation for simplicity. The
specification encoding then follows the same procedure as
described in Sec. VI-B, based on each skill’s precondition and
postcondition. The hard constraints remain unchanged, except
that translational and rotational ones are defined separately to
ensure the corresponding states remain unchanged when no
skill is selected.

To demonstrate the resulting maneuver, we construct a
scenario with multiple dense and sparse stepping stones ar-
ranged in an overall zig-zag pattern, requiring several turning

behaviors. Although sideways movement skills are feasible,

we manually exclude them before synthesis to highlight yaw
adjustments controlled by the rotational skills. As shown in
Fig. 10, the robot executes multiple turns to continuously
progress towards the global waypoint. More complex coupled
translational and rotational behaviors can also be defined by
modifying the preconditions and postconditions associated
with each skill.

X. HARDWARE DEMONSTRATIONS

We demonstrate that our entire framework can be success-
fully deployed on hardware, highlighting two key aspects.
First, we showcase the framework’s capability to generate
adaptive locomotion gaits across diverse terrain types, particu-
larly focusing on agile leaping motions. Second, we illustrate
the framework’s assured safety through obstacle avoidance and
selection of dynamically feasible gaits, benchmarked against
a heuristic-based planner.

A. Hardware Experiment Setup

For hardware experiments, we set up similar real-world
scenarios for both unstructured and rebar terrains. For the
unstructured terrain scenario, we construct wooden blocks to
form stepping stones, gaps, and flat regions, with each stepping
stone elevated approximately 0.12 m above the ground. For
the rebar scenario, we assemble a realistic rebar mat using
fourteen 1/2-inch x 4-foot rebars and six 1/2-inch x 10-
foot rebars. In the synthesis setup, obstacles are considered
a distinct terrain type, consistent with the simulation. Both
scenarios assume the maximum potential terrain types—§8 for
unstructured and 14 for rebar—though the real setups include
fewer types. As demonstrated in the simulation, this does not
increase complexity, as it only scales linearly with terrain-
request pairs due to our high-level manager. For safety, we set
abstraction cell sizes to 0.8 m for the unstructured terrain and
0.45 m for the rebar terrain.

B. Unstructured Terrain

As shown in Fig. 11, we first create a scenario with sparse
stepping stones and flat terrain regions. The stepping stones
are spaced between 0.18 — 0.23 m apart. Both side and front

Fig. 12. Hardware experiment demonstration for the second unstructured
terrain scenario with sparse stepping stones, flat, and gap terrains.

—— Measured —==- MICP

L7 1N = E 155
N x
1.80 -
1.6 3]
S 175
L

Base x (m)

(m)
Footy (m)

Foot z (m)
o o
58

ir

12 14 16 18 20 22 12 14 16 18 20 22
Time (s) Time (s)

Fig. 13. Tracking performance of the base and front-left foot positions: com-
parison between measured states and MICP-generated reference trajectories.

views are provided to highlight the misalignment of stepping
stones along the robot walking direction. The MICP planner
successfully generates a reference trajectory involving non-
trivial sideways movement, enabling the robot to safely land
on the stepping stones. All transitions utilize a 3 s trotting gait.

In the second scenario, shown in Fig. 12, we further include
a gap terrain segment. The gap, approximately 30 cm wide,
necessitates the use of a leaping gait. Since the gap terrain
was incorporated during offline synthesis, our framework can
directly select an optimized 1.5 s leaping gait generated by
gait-free MICP upon encountering this gap terrain. The task-
space tracking performance between the measured state and
the reference trajectory generated by the online MICP is
shown in Fig. 13. This includes the floating base position
and the end-effector (EE) position for the front-left foot.
The EE tracking maintains errors within 0.01 m in the x
and y axes, ensuring precise foot placement. Meanwhile, the
NMPC effectively adjusts the base position to compensate for
model simplifications at the MICP level, enabling successful
execution of both trotting and leaping motions.

C. Rebar Terrain

For the rebar terrain scenarios shown in Fig. 14, we test
two cases: one without any obstacles and one with an obstacle
introduced during execution. The rebar spacing varies between
0.1 m and 0.3 m. Offline synthesis is conducted without
prior knowledge of obstacles. In the first case (top row), the

robot Chotu successfully performs the entire maneuver with-
out encountering any runtime failures, consistently moving
forward until reaching the goal waypoint. In the second case
(bottom row), an obstacle is added to the environment but only
detected during the online execution phase. Upon encountering
a new terrain/request pair caused by the obstacle, the planner
promptly triggers a runtime resynthesis. Leveraging previously
generated skills, it computes a new strategy within 0.05 s to
detour around the obstacle and continue toward the goal. All
transitions in both scenarios use a 2.25 s static walking gait,
where only one foot is lifted at a time to ensure safety.

D. Benchmark: Heuristics-Based Planner

We create a third rebar scenario, shown in Fig. 15, by
removing two rebars to further increase the maximum spacing
to 0.48 m. This highlights the safety advantage of our planner
compared to a heuristics-based footstep planner. The heuristic
baseline follows a similar strategy to [4], [7], adapted for the
rebar scenario by selecting the nearest rebar polygon and the
closest feasible foothold to a nominal target. The resulting
footstep plan and linearly interpolated base trajectory are
sent to the same tracking control module. For fairness, all
parameters are tuned to achieve successful traversal at a speed
of 0.1 m/s (as shown in the supplemental video).

Without re-performing the offline synthesis, our framework
directly uses the results from Sec. X-C. It classifies the extreme
sparse region as an obstacle and performs runtime resynthesis,
generating a detour to safely reach the goal. In contrast, we
task the heuristics-based planner with the same goal at 0.2 m/s
to match our planner’s effective gait speed (i.e., 0.45 m per
2.25 s transition). Without reasoning about the compatibility
between terrain geometry and gait feasibility, the heuristic
planner suffers from poor EE tracking after a few steps,
leading to foot slippage and eventual failure as the robot is
entangled by the sparse rebar layout.

E. Computational Time

We report the hardware computational time in Table IV.
Except for the second scenario in the unstructured terrain,
we observe a notable increase in solve time compared to
simulation. This is mainly due to two factors: (1) In the
first unstructured terrain scenario, the two sets of stepping
stones are laterally misaligned from the robot’s viewpoint,
requiring non-trivial deviation from the nominal foot location
and sideways movement; (2) In the rebar scenarios, the real-
world rebar polygons are not perfectly aligned with the x
or y-axis as in simulation, introducing additional numerical
complexity for branch-and-bound solvers. Further acceleration
of MIP solving through tighter convex relaxations [106], [107]
remains an important direction for future work.

XI. DISCUSSION
A. Generalization to More Types of Terrain

The current framework relies on manual terrain abstraction
and classification, which requires expert knowledge to define
terrain types and assign them to discrete symbolic categories.

Scenario without obstacle

'x = i
CS e
‘,-/

Fig. 14. Execution results in rebar terrain without (top row) and with obstacle (bottom row). In the obstacle case, runtime resynthesis is triggered to generate

a detour strategy and ensure successful traversal.

Proposed

Time

Resynthesis triggered

>

Fig. 15. Comparison between the proposed method and a heuristics-based planner in an extreme sparse rebar scenario. The proposed method performs
resynthesis and succeeds, while the heuristics-based planner fails due to foot trapping.

TABLE IV
ONLINE GAIT-FIXED MICP SOLVING TIME FOR HARDWARE

Scenario Polygons Min (s) Mean (s) Max (s)
Unstructured - Scene 1 6 0.81 4.04 7.86
Unstructured - Scene 2 5 0.16 0.53 0.96

Rebar - Scene 1 8 3.88 6.54 9.26
Rebar - Scene 2 7.5 3.60 9.13 19.23
Rebar - Scene 3 6.33 2.45 7.37 14.7

This process typically involves analyzing physical features
such as terrain shape, height variation, and support area to
determine whether a terrain segment should be labeled as flat,

sparse, dense, high, gap, etc. While effective, this expert-driven
approach may limit scalability and generalization to novel
environments or terrain conditions. Future extensions could
incorporate data-driven terrain classification and generation
methods, such as supervised learning or clustering based on
3D point cloud statistics to automate the terrain abstraction
process and reduce reliance on human heuristics.

B. Optimality

The synthesis process focuses on guaranteeing feasibility
and correctness of transitions but does not account for the rel-

ative cost or quality of different feasible gaits. When multiple
locomotion gaits (e.g., trotting, bounding, leaping) are viable
for a given symbolic transition, the current method does not
evaluate their optimality in terms of energy efficiency, robust-
ness, execution time, or other performance metrics. Instead,
it selects the first gait that satisfies the physical feasibility
conditions via MICP. Integrating cost-aware synthesis would
enable the framework to prioritize higher-quality behaviors and
make more informed decisions under trade-offs.

C. Perception Module

The proposed framework is modular and can be directly
integrated with a wide range of perception pipelines that
provide terrain geometry in the form of segmented polygo-
nal regions [108]. Existing perception modules that perform
terrain segmentation using LiDAR, RGB-D sensors, or stereo
vision can be adapted to supply the required input to the MICP
planner and symbolic abstraction layers.

XII. CONCLUSION

In this work, we presented an integrated planning frame-
work for terrain-adaptive locomotion that combines reactive
synthesis with MICP, enabling safe and reactive responses
in dynamically changing environments. To address unreal-
izable specifications arising from limited motion primitives,
we introduced a symbolic repair approach that incorporates
dynamic feasibility checks, automatically identifying missing
transitions necessary for navigating adversarial terrains. In
the online execution phase, we tackled the disparity between
offline synthesis and real-world conditions by using an online
MICP solver and a runtime repair process based on real-world
terrain data, including unforeseen terrain conditions. Our ap-
proach not only enhances motion feasibility and safety but also
provides a scalable solution for legged robots maneuvering in
complex and safety-critical environments.

REFERENCES

[1] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive
control,” in 2018 IEEE/RSJ international conference on intelligent
robots and systems (IROS). 1EEE, 2018, pp. 1-9.

[2] D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” arXiv preprint arXiv:1909.06586, 2019.

[3] Z.Zhou, B. Wingo, N. Boyd, S. Hutchinson, and Y. Zhao, “Momentum-
aware trajectory optimization and control for agile quadrupedal loco-
motion,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp.
7755-7762, 2022.

[4] P. Fankhauser, M. Bjelonic, C. D. Bellicoso, T. Miki, and M. Hutter,
“Robust rough-terrain locomotion with a quadrupedal robot,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 5761-5768.

[5] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter, “Per-
ceptive locomotion through nonlinear model-predictive control,” IEEE
Transactions on Robotics, 2023.

[6] H.-W. Park, P. M. Wensing, and S. Kim, “Online planning for au-
tonomous running jumps over obstacles in high-speed quadrupeds,” in
Robotics: Science and Systems, 2015.

[7]1 D. Kim, D. Carballo, J. Di Carlo, B. Katz, G. Bledt, B. Lim, and
S. Kim, “Vision aided dynamic exploration of unstructured terrain with
a small-scale quadruped robot,” in IEEE International Conference on
Robotics and Automation. 1EEE, 2020, pp. 2464-2470.

(8]

[

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

S. Gilroy, D. Lau, L. Yang, E. Izaguirre, K. Biermayer, A. Xiao,
M. Sun, A. Agrawal, J. Zeng, Z. Li et al., “Autonomous navigation
for quadrupedal robots with optimized jumping through constrained
obstacles,” in 2021 IEEE 17th International Conference on Automation
Science and Engineering (CASE). 1EEE, 2021, pp. 2132-2139.

J. Norby and A. M. Johnson, “Fast global motion planning for
dynamic legged robots,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 1EEE, 2020, pp. 3829-3836.

M. Chignoli, S. Morozov, and S. Kim, “Rapid and reliable quadruped
motion planning with omnidirectional jumping,” in International Con-
ference on Robotics and Automation. 1EEE, 2022, pp. 6621-6627.
Y. Zhao, Y. Li, L. Sentis, U. Topcu, and J. Liu, “Reactive task and mo-
tion planning for robust whole-body dynamic locomotion in constrained
environments,” The International Journal of Robotics Research, p.
02783649221077714, 2022.

A. Shamsah, Z. Gu, J. Warnke, S. Hutchinson, and Y. Zhao, “Integrated
task and motion planning for safe legged navigation in partially
observable environments,” IEEE Transactions on Robotics, 2023.

A. K. Valenzuela, “Mixed-integer convex optimization for planning
aggressive motions of legged robots over rough terrain,” Ph.D. disser-
tation, Massachusetts Institute of Technology, 2016.

Y. Shirai, X. Lin, A. Schperberg, Y. Tanaka, H. Kato, V. Vichathorn,
and D. Hong, “Simultaneous contact-rich grasping and locomotion
via distributed optimization enabling free-climbing for multi-limbed
robots,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2022, pp. 13563-13570.

R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 2014 IEEE-RAS international
conference on humanoid robots. 1EEE, 2014, pp. 279-286.

H. Dai, G. Izatt, and R. Tedrake, “Global inverse kinematics via mixed-
integer convex optimization,” The International Journal of Robotics
Research, vol. 38, no. 12-13, pp. 1420-1441, 2019.

Y. Ding, C. Li, and H.-W. Park, “Kinodynamic motion planning for
multi-legged robot jumping via mixed-integer convex program,’ in
2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2020, pp. 3998—4005.

N. Fey, R. J. Frei, and P. M. Wensing, “3d hopping in discontinuous
terrain using impulse planning with mixed-integer strategies,” IEEE
Robotics and Automation Letters, 2024.

B. Ponton, A. Herzog, S. Schaal, and L. Righetti, “A convex model of
humanoid momentum dynamics for multi-contact motion generation,”
in 2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids). 1EEE, 2016, pp. 842-849.

F. Risbourg, T. Corberes, P.-A. Léziart, T. Flayols, N. Mansard, and
S. Tonneau, “Real-time footstep planning and control of the solo
quadruped robot in 3d environments,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2022, pp. 12950-12956.
B. Acosta and M. Posa, “Bipedal walking on constrained footholds
with mpc footstep control,” in 2023 IEEE-RAS 22nd International
Conference on Humanoid Robots. 1EEE, 2023, pp. 1-8.

B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu,
D. G. Caldwell, J. Cappelletto, J. C. Grieco, G. Ferniandez-Lopez, and
C. Semini, “Simultaneous contact, gait, and motion planning for robust
multilegged locomotion via mixed-integer convex optimization,” IEEE
Robotics and Automation Letters, vol. 3, no. 3, pp. 2531-2538, 2017.
R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar, “Synthe-
sis of reactive (1) designs,” Journal of Computer and System Sciences,
vol. 78, no. 3, pp. 911-938, 2012.

Z. Zhou, Q. Meng, H. Kress-Gazit, and Y. Zhao, “Physically-feasible
reactive synthesis for terrain-adaptive locomotion via trajectory opti-
mization and symbolic repair,” in 2025 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). 1EEE, 2025.

M. Wermelinger, P. Fankhauser, R. Diethelm, P. Kriisi, R. Siegwart,
and M. Hutter, “Navigation planning for legged robots in challenging
terrain,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2016, pp. 1184-1189.

P. Fernbach, S. Tonneau, A. Del Prete, and M. Taix, “A kinody-
namic steering-method for legged multi-contact locomotion,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1EEE, 2017, pp. 3701-3707.

Q. Liao, Z. Li, A. Thirugnanam, J. Zeng, and K. Sreenath, “Walking
in narrow spaces: Safety-critical locomotion control for quadrupedal
robots with duality-based optimization,” in 2023 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2023, pp. 2723-2730.

S. Feng, Z. Zhou, J. S. Smith, M. Asselmeier, Y. Zhao, and P. A.
Vela, “Gpf-bg: A hierarchical vision-based planning framework for safe

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

quadrupedal navigation,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2023, pp. 1968-1975.

J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, “A control architecture for
quadruped locomotion over rough terrain,” in 2008 IEEE International
Conference on Robotics and Automation. 1EEE, 2008, pp. 811-818.
M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Fast,
robust quadruped locomotion over challenging terrain,” in 2010 IEEE
International Conference on Robotics and Automation. IEEE, 2010,
pp- 2665-2670.

A. Winkler, 1. Havoutis, S. Bazeille, J. Ortiz, M. Focchi, R. Dillmann,
D. Caldwell, and C. Semini, “Path planning with force-based foothold
adaptation and virtual model control for torque controlled quadruped
robots,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2014, pp. 6476-6482.

C. Mastalli, I. Havoutis, A. W. Winkler, D. G. Caldwell, and C. Sem-
ini, “On-line and on-board planning and perception for quadrupedal
locomotion,” in 2015 IEEE International Conference on Technologies
for Practical Robot Applications (TePRA). 1EEE, 2015, pp. 1-7.

R. J. Griffin, G. Wiedebach, S. McCrory, S. Bertrand, I. Lee, and
J. Pratt, “Footstep planning for autonomous walking over rough ter-
rain,” in 2019 IEEE-RAS 19th international conference on humanoid
robots (humanoids). 1EEE, 2019, pp. 9-16.

S. Tonneau, D. Song, P. Fernbach, N. Mansard, M. Taix, and
A. Del Prete, “Sllm: Sparse 11-norm minimization for contact planning
on uneven terrain,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). 1EEE, 2020, pp. 6604-6610.

J. Ren, X. Lin, R. Mineyev, K. M. Feigh, S. Coogan, and Y. Zhao,
“Accelerating signal-temporal-logic-based task and motion planning
of bipedal navigation using benders decomposition,” arXiv preprint
arXiv:2508.13407, 2025.

K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid lo-
comotion planning,” in 5th IEEE-RAS International Conference on
Humanoid Robots, 2005. 1EEE, 2005, pp. 7-12.

T. Bretl, “Motion planning of multi-limbed robots subject to equilib-
rium constraints: The free-climbing robot problem,” The International
Journal of Robotics Research, vol. 25, no. 4, pp. 317-342, 2006.

S. Tonneau, A. Del Prete, J. Pettré, C. Park, D. Manocha, and
N. Mansard, “An efficient acyclic contact planner for multiped robots,”
IEEE Transactions on Robotics, vol. 34, no. 3, pp. 586-601, 2018.

F. Jenelten, T. Miki, A. E. Vijayan, M. Bjelonic, and M. Hutter,
“Perceptive locomotion in rough terrain—online foothold optimization,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5370-5376,
2020.

A. Agrawal, S. Chen, A. Rai, and K. Sreenath, “Vision-aided dynamic
quadrupedal locomotion on discrete terrain using motion libraries,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 4708-4714.

O. A. V. Magana, V. Barasuol, M. Camurri, L. Franceschi, M. Focchi,
M. Pontil, D. G. Caldwell, and C. Semini, “Fast and continuous
foothold adaptation for dynamic locomotion through cnns,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 2140-2147, 2019.
O. Villarreal, V. Barasuol, P. M. Wensing, D. G. Caldwell, and C. Sem-
ini, “Mpc-based controller with terrain insight for dynamic legged
locomotion,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2020, pp. 2436-2442.

W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans, S. Ha,
J. Tan, and T. Zhang, “Visual-locomotion: Learning to walk on complex
terrains with vision,” in 5th Annual Conference on Robot Learning,
2021.

S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and 1. Havoutis,
“Rloc: Terrain-aware legged locomotion using reinforcement learning
and optimal control,” IEEE Transactions on Robotics, vol. 38, no. 5,
pp- 2908-2927, 2022.

F. Wu, X. Nal, J. Jang, W. Zhu, Z. Gu, A. Wu, and Y. Zhao, “Learn
to teach: Sample-efficient privileged learning for humanoid locomotion
over real-world uneven terrain,” IEEE Robotics and Automation Letters,
2025.

J. Kamohara, F. Wu, C. Wamorkar, S. Hutchinson, and Y. Zhao, “RI-
augmented adaptive model predictive control for bipedal locomotion
over challenging terrain,” 2025.

R. Grandia, A. J. Taylor, A. D. Ames, and M. Hutter, “Multi-layered
safety for legged robots via control barrier functions and model
predictive control,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). 1EEE, 2021, pp. 8352-8358.

F. Jenelten, R. Grandia, F. Farshidian, and M. Hutter, ‘“Tamols: Terrain-
aware motion optimization for legged systems,” IEEE Transactions on
Robotics, vol. 38, no. 6, pp. 3395-3413, 2022.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

K. Muenprasitivej, J. Jiang, A. Shamsah, S. Coogan, and Y. Zhao,
“Bipedal safe navigation over uncertain rough terrain: Unifying terrain
mapping and locomotion stability,” in 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 1EEE, 2024,
pp. 11264-11271.

A. Shamsah, J. Jiang, Z. Yoon, S. Coogan, and Y. Zhao, “Terrain-aware
model predictive control of heterogeneous bipedal and aerial robot
coordination for search and rescue tasks,” in 2025 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE, 2025, pp.
12352-12358.

K. Muenprasitivej, Y. Zhao, and G. Chou, “Probabilistically-safe
bipedal navigation over uncertain terrain via conformal prediction and
contraction analysis,” 2025.

X. Da, Z. Xie, D. Hoeller, B. Boots, A. Anandkumar, Y. Zhu,
B. Babich, and A. Garg, “Learning a contact-adaptive controller for
robust, efficient legged locomotion,” in Conference on Robot Learning.
PMLR, 2021, pp. 883-894.

Y. Yang, T. Zhang, E. Coumans, J. Tan, and B. Boots, “Fast and
efficient locomotion via learned gait transitions,” in Conference on
Robot Learning. PMLR, 2022, pp. 773-783.

Z. Xie, X. Da, B. Babich, A. Garg, and M. v. de Panne, “Glide:
Generalizable quadrupedal locomotion in diverse environments with
a centroidal model,” in International Workshop on the Algorithmic
Foundations of Robotics. Springer, 2022, pp. 523-539.

G. B. Margolis, T. Chen, K. Paigwar, X. Fu, D. Kim, S. b. Kim, and
P. Agrawal, “Learning to jump from pixels,” in Proceedings of the 5th
Conference on Robot Learning. PMLR, 2022, pp. 1025-1034.

S. Yu, N. Perera, D. Marew, and D. Kim, “Learning generic and
dynamic locomotion of humanoids across discrete terrains,” arXiv
preprint arXiv:2405.17227, 2024.

C. Boussema, M. J. Powell, G. Bledt, A. J. Ijspeert, P. M. Wensing, and
S. Kim, “Online gait transitions and disturbance recovery for legged
robots via the feasible impulse set,” IEEE Robotics and automation
letters, vol. 4, no. 2, pp. 1611-1618, 2019.

K. Wang, Z. J. Hu, P. Tisnikar, O. Helander, D. Chappell, and
P. Kormushev, “When and where to step: Terrain-aware real-time
footstep location and timing optimization for bipedal robots,” arXiv
preprint arXiv:2302.07345, 2023.

H. Sun, J. Yang, Y. Jia, and C. Wang, “Free gait generation of
quadruped robots via impulse-based feasibility analysis,” IEEE/ASME
Transactions on Mechatronics, 2023.

M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69-81, 2014.

1. Mordatch, E. Todorov, and Z. Popovié, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (ToG), vol. 31, no. 4, pp. 1-8, 2012.

L. Drnach and Y. Zhao, “Robust trajectory optimization over uncertain
terrain with stochastic complementarity,” IEEE Robotics and Automa-
tion Letters, vol. 6, no. 2, pp. 1168-1175, 2021.

A. Aydinoglu and M. Posa, “Real-time multi-contact model predictive
control via admm,” in 2022 International Conference on Robotics and
Automation (ICRA). IEEE, 2022, pp. 3414-3421.

S. Le Cleac’h, T. A. Howell, S. Yang, C.-Y. Lee, J. Zhang, A. Bishop,
M. Schwager, and Z. Manchester, “Fast contact-implicit model predic-
tive control,” IEEE Transactions on Robotics, 2024.

L. Drnach, J. Z. Zhang, and Y. Zhao, “Mediating between contact
feasibility and robustness of trajectory optimization through chance
complementarity constraints,” Frontiers in Robotics and Al, vol. 8, p.
785925, 2022.

X. Jiang, W. Chi, Y. Zheng, S. Zhang, Y. Ling, J. Xu, and Z. Zhang,
“Locomotion generation for quadruped robots on challenging terrains
via quadratic programming,” Autonomous Robots, vol. 47, no. 1, pp.
51-76, 2023.

C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P.
Kaelbling, and T. Lozano-Pérez, “Integrated task and motion planning,”
Annual review of control, robotics, and autonomous systems, vol. 4,
no. 1, pp. 265-293, 2021.

Z.Zhao, S. Cheng, Y. Ding, Z. Zhou, S. Zhang, D. Xu, and Y. Zhao, “A
survey of optimization-based task and motion planning: From classical
to learning approaches,” IEEE/ASME Transactions on Mechatronics,
2024.

M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning.” in IJCAI, 2015, pp.
1930-1936.

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum,
“Differentiable physics and stable modes for tool-use and manipulation
planning,” 2018.

T. Migimatsu and J. Bohg, “Object-centric task and motion planning in
dynamic environments,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 844-851, 2020.

Z. Zhao, Z. Zhou, M. Park, and Y. Zhao, “Sydebo: Symbolic-decision-
embedded bilevel optimization for long-horizon manipulation in dy-
namic environments,” IEEE Access, vol. 9, pp. 128 817-128 826, 2021.
J.-P. Sleiman, F. Farshidian, and M. Hutter, “Versatile multicontact
planning and control for legged loco-manipulation,” Science Robotics,
vol. 8, no. 81, p. eadg5014, 2023.

Y. Ding, M. Zhang, C. Li, H.-W. Park, and K. Hauser, “Hybrid
sampling/optimization-based planning for agile jumping robots on chal-
lenging terrains,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). 1EEE, 2021, pp. 2839-2845.

Y. Shirai, X. Lin, A. Mehta, and D. Hong, “Lto: lazy trajectory
optimization with graph-search planning for high dof robots in cluttered
environments,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2021, pp. 7533-7539.

E. Jelavic, F. Farshidian, and M. Hutter, “Combined sampling and
optimization based planning for legged-wheeled robots,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2021, pp. 8366-8372.

L. Amatucci, J.-H. Kim, J. Hwangbo, and H.-W. Park, “Monte carlo
tree search gait planner for non-gaited legged system control,” in 2022
International Conference on Robotics and Automation (ICRA). 1EEE,
2022, pp. 4701-4707.

C. Chen, P. Culbertson, M. Lepert, M. Schwager, and J. Bohg,
“Trajectotree: Trajectory optimization meets tree search for planning
multi-contact dexterous manipulation,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 1EEE, 2021,
pp. 8262-8268.

M. Zhang, D. K. Jha, A. U. Raghunathan, and K. Hauser, “Simul-
taneous trajectory optimization and contact selection for multi-modal
manipulation planning,” arXiv preprint arXiv:2306.06465, 2023.

H. Zhu, A. Meduri, and L. Righetti, “Efficient object manipulation
planning with monte carlo tree search,” in 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 1EEE, 2023,
pp. 10628-10635.

M. Asselmeier, J. Ivanova, Z. Zhou, P. A. Vela, and Y. Zhao, “Hierar-
chical experience-informed navigation for multi-modal quadrupedal re-
bar grid traversal,” in 2024 IEEE International Conference on Robotics
and Automation (ICRA). 1EEE, 2024, pp. 8065-8072.

H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for robots:
Guarantees and feedback for robot behavior,” Annual Review of Con-
trol, Robotics, and Autonomous Systems, vol. 1, pp. 211-236, 2018.
S. Kulgod, W. Chen, J. Huang, Y. Zhao, and N. Atanasov, ‘“Temporal
logic guided locomotion planning and control in cluttered environ-
ments,” in American Control Conference. 1EEE, 2020, pp. 5425-5432.
Z. Zhou, D. J. Lee, Y. Yoshinaga, S. Balakirsky, D. Guo, and Y. Zhao,
“Reactive task allocation and planning for quadrupedal and wheeled
robot teaming,” in IEEE International Conference on Automation
Science and Engineering. 1EEE, 2022, pp. 2110-2117.

J. Jiang, S. Coogan, and Y. Zhao, “Abstraction-based planning for
uncertainty-aware legged navigation,” IEEE Open Journal of Control
Systems, 2023.

Z. Gu, N. Boyd, and Y. Zhao, “Reactive locomotion decision-making
and robust motion planning for real-time perturbation recovery,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 1896-1902.

A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 1989, pp. 179-190.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE transactions on
robotics, vol. 25, no. 6, pp. 1370-1381, 20009.

J. A. DeCastro, R. Ehlers, M. Rungger, A. Balkan, P. Tabuada, and
H. Kress-Gazit, “Dynamics-based reactive synthesis and automated
revisions for high-level robot control,” arXiv preprint arXiv:1410.6375,
2014.

G. E. Fainekos, S. G. Loizou, and G. J. Pappas, “Translating temporal
logic to controller specifications,” in Proceedings of the 45th IEEE
Conference on Decision and Control. 1EEE, 2006, pp. 899-904.

A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based motion
planning with temporal goals,” in 2010 IEEE International Conference
on Robotics and Automation. 1EEE, 2010, pp. 2689-2696.

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

J. Liu, N. Ozay, U. Topcu, and R. M. Murray, “Synthesis of reactive
switching protocols from temporal logic specifications,” IEEE Trans-
actions on Automatic Control, vol. 58, no. 7, pp. 1771-1785, 2013.
M. R. Maly, M. Lahijanian, L. E. Kavraki, H. Kress-Gazit, and M. Y.
Vardi, “ITterative temporal motion planning for hybrid systems in par-
tially unknown environments,” in Proceedings of the 16th international
conference on Hybrid systems: computation and control, 2013, pp.
353-362.

A. Pacheck, S. Moarref, and H. Kress-Gazit, “Finding missing skills
for high-level behaviors,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2020, pp. 10335-10341.
A. Pacheck and H. Kress-Gazit, “Physically feasible repair of reactive,
linear temporal logic-based, high-level tasks,” IEEE Transactions on
Robotics, 2023.

Q. Meng and H. Kress-Gazit, “Automated Robot Recovery from
Assumption Violations of High-Level Specifications,” in 2024 IEEE
20th International Conference on Automation Science and Engineering
(CASE). IEEE, Aug. 2024, pp. 4154-4161.

R. Ehlers and V. Raman, “Slugs: Extensible GR(1) synthesis,” in
International Conference on Computer Aided Verification. ~ Springer,
2016, pp. 333-339.

C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in 2014 IEEE-RAS
International Conference on Humanoid Robots. 1EEE, 2014, pp. 295—
302.

M. Chignoli, D. Kim, E. Stanger-Jones, and S. Kim, “The mit
humanoid robot: Design, motion planning, and control for acrobatic
behaviors,” in 2020 IEEE-RAS 20th International Conference on Hu-
manoid Robots (Humanoids). 1EEE, 2021, pp. 1-8.

J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter, “A unified
mpc framework for whole-body dynamic locomotion and manipula-
tion,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4688—
4695, 2021.

F. Farshidian et al., “OCS2: An open source library for optimal
control of switched systems,” [Online]. Available: https://github.com/
leggedrobotics/ocs?2.

S. Kuindersma, F. Permenter, and R. Tedrake, “An efficiently solvable
quadratic program for stabilizing dynamic locomotion,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2014, pp. 2589-2594.

P. M. Wensing and D. E. Orin, “Generation of dynamic humanoid
behaviors through task-space control with conic optimization,” in 2013
IEEE International Conference on Robotics and Automation. 1EEE,
2013, pp. 3103-3109.

G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and
S. Kim, “Mit cheetah 3: Design and control of a robust, dynamic
quadruped robot,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 1EEE, 2018, pp. 2245-2252.
T. Marcucci, J. Umenberger, P. Parrilo, and R. Tedrake, “Shortest paths
in graphs of convex sets,” STAM Journal on Optimization, vol. 34, no. 1,
pp. 507-532, 2024.

X. Lin, “Accelerate hybrid model predictive control using generalized
benders decomposition,” arXiv preprint arXiv:2406.00780, 2024.

T. Miki, L. Wellhausen, R. Grandia, F. Jenelten, T. Homberger, and
M. Hutter, “Elevation mapping for locomotion and navigation using
gpu,” in 2022 [EEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 1EEE, 2022, pp. 2273-2280.

https://github.com/leggedrobotics/ocs2
https://github.com/leggedrobotics/ocs2

